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Abstract: Duckweed (Lemna) is a possible solution for the treatment of aqueous waste streams and
the simultaneous provision of protein-rich biomass. Nitrification-Denitrification effluent (NDNE)
from pig manure treatment has been previously used as a growing medium for duckweed. This study
investigated the use of a continuous duckweed cultivation system to treat NDNE as a stand-alone
technology. For this purpose, a system with a continuous supply of waste streams from the pig
manure treatment, continuous biomass production, and continuous discharge that meets the legal
standards in Flanders (Belgium) was simulated for a 175-day growing season. In this simulation,
salt accumulation was taken into account. To prevent accumulating salts from reaching a toxic
concentration and consequently inhibiting growth, the cultivation system must be buffered, which
can be achieved by altering the depth of the system. To determine the minimum depth of such
a system, a tray experiment was set up. For that, salt accumulation data obtained from previous
research were used for simulating systems with different pond depths. It was found that a depth of
at least 1 m is needed to prevent a significant relative growth inhibition at the end of the growing
season compared to the start. This implies a high water consumption (5–10 times more than maize).
As a response, a second cultivation system was investigated for the use of more concentrated NDNE.
For this purpose, salt tolerance experiments were conducted on synthetic and biological media.
Surprisingly, it was observed that duckweed grows better on diluted NDNE (to 75% NDNE, or EC of
8 mS/cm) than on a synthetic medium (EC of 1.5 mS/cm), indicating the potential of such a system.

Keywords: Lemnacea; alternative protein; agricultural wastewater; water recovery; accumulation;
continuous systems

1. Introduction

Manure and agricultural wastewater treatment is a worldwide problem [1]. In some
regions with intensive agriculture, such as Flanders (Belgium), manure application on land
is limited and therefore its surplus needs to be treated to prevent eutrophication [2]. A
considerable amount of nitrogen and phosphorus is therefore removed during the treatment
of surplus manure and cannot be used for crop production [3]. At the same time, there is a
significant import of fertilizers and proteins in these regions. Therefore, using this surplus
manure can help to close the nutrient loop in the region.

A potential solution to close this cycle can be the cultivation of duckweed on wastew-
ater. Duckweed is a general name for plants that belong to the family of Lemnaceae [4].
These small floating macrophytes can be found all over the world and belong to the most
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rapidly growing Angiosperms, following a quasi-exponential growth rate [5]. In Europe
(Ireland), production rates of 37.89 tonnes of dry duckweed biomass have been reported [6].
However, higher productivity levels of 68 tonnes DW ha−1 year−1 have also been re-
ported [7]. Besides productivity, the primary advantage of duckweed is its high crude
protein content of around 35% [8], and up to 45% DW [9]. Additionally, its moderate
amount of fibres (5–15% on DW) makes it readily digestible for monogastric animals and
many fishes [10,11].

Similar to the wetland technology developed to process pig manure [12], duckweed
forms a floating mat that can remove N and P from wastewater. The advantage of duck-
weed in comparison to wetlands is the simultaneous provision of proteins for livestock
production [13]. In this way, nutrients are recycled into a key feed ingredient. Duckweed
has been shown to grow on dairy wastewater [14,15], pig manure wastewater [7,16] and
aquaculture effluent [17,18].

Figure 1 presents an illustration of a manure treatment process and how duckweed
can be added to that process. The first part of this scheme (up to NDNE) has already been
applied at a manure treatment plant. The second part, the duckweed cultivation system,
has not yet been applied in practice but was simulated in this study. This system was
filled with a certain amount of NDNE and liquid fraction of pig manure (LF), and was
diluted with rain water (RW) at the beginning of the growing season. Subsequently, a
continuous supply of NDNE and LF was added so that the added N and P concentration
was equal to the treatment capacity of the system, which equaled 1107 ± 715 mg/m2/d and
149 ± 150 mg/m2/d, respectively [19]. In Flanders (Belgium), it is only feasible to grow
duckweed for around 175 days each year, as was determined by Devlamynck et al. [13].
During this period, a continuous flow of dischargeable water is generated at the end of the
system. After the growing season, the duckweed tank can be gradually emptied for the
remaining days of the year.

Figure 1. Schematic representation of the manure treatment process with centrifugal separation as
the first step, biological treatment as the second step (with nitrification-denitrification = NDN) and a
duckweed pond as the third and final treatment step. The duckweed pond in this scheme is not yet
applied in practice, the other treatment steps are presented in the same order as they occur at IVACO,
a pig manure treatment plant in Flanders (Belgium), Eernegem.

In the duckweed cultivation system, as presented in Figure 1, nutrients can accumulate
over time when their incoming concentration is higher than the concentration that can be
removed by the system [19]. It is, however, possible to reduce the accumulation rate by
adjusting the system’s volume or, in other words, the pond’s depth. The deeper the pond,
the lower the concentration of accumulating nutrients will be after one growing season.
Yet, the depth must be minimized in order to reduce the water consumption of the system.

Therefore, this study investigated the possibility of using a continuous duckweed
cultivation system to treat NDNE as a stand-alone approach (as represented in Figure 1).
For this purpose, a system with a continuous supply of waste streams and a continuous
discharge that meets the legal standards in Flanders (Belgium) was simulated for a 175-day
growing season. Next, a tray experiment was carried out to determine the minimum depth
of such a system. Furthermore, the impact of dilution on the suitability of NDNE as a
growing medium for duckweed was also assessed. From salt tolerance experiments carried
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out by Landolt et al., an electrical conductivity (EC) of 10.9 mS/cm has been proposed as
a maximal salt stress level for duckweed [9]. This indicates that undiluted NDNE cannot
be used for duckweed cultivation as variations in EC between 7 and 24 mS/cm were
observed [20]. However, EC does not distinguish between cations and anions or the share
of beneficial and harmful elements. For example, Walsh et al., recently highlighted the
Ca-to-Mg ratio as an extremely important parameter for duckweed growth [21]. Therefore,
this study also investigated if the ratio of anions can play a role in the salt tolerance
of duckweed.

2. Results and Discussion
2.1. Simulation of a Continuous Duckweed Cultivation System (Tray Experiment 1)

In a continuous system, the accumulation of ballast salts can occur [19], which can
result in toxic salt levels and lead to a culture crash. Therefore, experiments mimicking
continuous systems for obtaining more accurate results and assessing their water con-
sumption are needed. In this study, a continuous system with a continuous supply of
NDNE and LF and a continuous discharge that meets the discharge standards in Flanders
(Belgium) that works for 175 days was simulated. The medium composition was calculated
for systems with different depths (0.4 m, 0.7 m and 1 m). After simulating the system, a tray
experiment was carried out with the calculated compositions. The relative growth (RGR)
and chlorophyll inhibitions results, obtained from this experiment, are shown in Figure 2.

Figure 2. The relative growth rate inhibition (A), and the chlorophyll inhibition (B) of duckweed
cultivated on a simulation of the concentration of wastewater of a continuous system, before and
after 175 growing days, with different buffering capacities. Significant differences (n = 4 and p < 0.05)
per graph are indicated by different letters. Error bars indicate standard deviations.

It was observed that the RGR inhibition of the continuous systems with a depth of
0.7 m or 0.4 m was significantly higher at the end of the growing season compared to
the beginning of the season (p = 3.98 × 10−3 and 1.28 × 10−11, respectively). Regarding
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chlorophyll inhibition, it was shown that the reference medium had a significantly higher
chlorophyll content compared to the other treatments (p < 8.99 × 10−7). When comparing
the chlorophyll concentrations at the start of the growing season with those at the end of
the growing season, only the system with a depth of 0.7 m showed a significant inhibition
(p = 3.56 × 10−2). For the 0.4 m system, the duckweed obtained in the pre-cultivation
exhibited a significant chlorophyll inhibition (p = 3.56 × 10−2) but seemed to recover
during the cultivation step.

As expected, the RGR of duckweed grown in a deeper system was less inhibited after
175 days than when it was growing in a shallower system. Accordingly, the deeper the
system, or the higher the buffering capacity for the accumulating salts that enter the system,
the lower the inhibition after one growing season. Roughly, a similar trend was shown for
chlorophyll inhibition. The observation that the reference medium had a higher chlorophyll
content can be explained by the low N and P concentrations of the wastewater-based
growing media. Additionally, the pH of the reference medium was closer to the optimal
pH for duckweed growth (Table A3) [9].

It can be concluded that, when duckweed is grown in a system with a continuous
supply of NDNE and LF and a continuous discharge that meets the legal standards in
Flanders (Belgium), a buffering capacity of at least 1 m depth is recommended. This would
ensure that the relative growth inhibition would not be significantly higher at the end of
the growing season compared to the start of the cultivation. However, in practice, this
would mean that the continuous cultivation of duckweed would consume a significant
amount of water. A buffering capacity of at least 1 m depth means that, for the cultivation
of one hectare for one growing season, 10,000 m3 water is needed. This is significantly
higher compared to other crops such as maize, which has an irrigation water requirement
of 900 to 1750 m3/ha/yr for optimal growth [22]. In reality, the water consumption itself
may be even higher than calculated in this simulation, as the experiment did not take into
account the naturally occurring evaporation of water.

The high water consumption is a result of the toxicity that occurs due to the accu-
mulation of nutrients because of the continuous addition of biological waste streams.
According to our simulation, this toxicity is mainly determined by potassium, since this
element exceeds the toxicity limit according to Landolt et al., in the shortest time (see
Table A3). However, if one considers the actual measured values before and after cultiva-
tion (Tables A1 and A2), it can be observed that the toxicity limit of potassium (2000 mg/L)
was not exceeded. None of the growing media, neither before nor after cultivation, exceeded
the toxicity limit for any element according to Landolt and Frick et al. [9,23]. Nevertheless,
some elements, such as K and Cl, lie further outside their optimum range when a shallower
system is simulated, which may be the reason for increased stress and therefore growth
and chlorophyll inhibition.

Next to the high K concentration, a possible driving factor determining toxicity may be
an adverse balance of nutrients. For example, it is known that a ratio which favors Mg over
Ca negatively affects L. minor growth and its photosynthetic yield [21]. Therefore, a Ca:Mg
ratio of 1:1.6 or greater is recommended for L. minor growth. In Figure 3 it is shown that,
during cultivation, the Mg/Ca ratio of the reference and start medium was significantly
lower than the maximum ratio of 1.6 (p = 8.33 × 10−5 and 1.42 × 10−7, respectively). For
the least buffered medium (0.4 m) it was shown that the Mg/Ca ratio was significantly
higher than this maximum ratio (p = 9.16 × 10−5).

The shallower the system or the less buffering capacity the system has for accumulating
salts, the higher the growth inhibition will be, and also, the more the nutrient uptake will
decrease and will even become negative (Tables A7 and A8). A negative nutrient uptake
indicates leaching, which is a clear signal of plant stress. A negative removal was observed
for the elements Ca, P and Mn. This is an issue, especially for phosphorous, as the system
was created/simulated in such a way that the added P concentrations should equal the
removed P concentration. These measured nutrient removals also do not match those
published by Devlamynck et al. [19], which were used to calculate the needed medium
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concentrations for the simulation. In addition, a constant removal was used to calculate all
simulations for each nutrient, whereas we can see here that, for most nutrients, removal
increases with increasing concentration. Even though more investigations are needed for
continuous systems, this study indicates the importance of taking into account the salt
accumulation in such setups.

Figure 3. The Mg/Ca ratio in the medium of the simulated continuous system, before and after
175 growing days, with different buffering capacities. The dashed line indicates the minimum
permitted Mg concentration in relation to the Ca concentration in the medium. Significant differences
(n = 4 and p < 0.05) per graph are indicated by different letters. The letter in the dashed square
belongs to the dashed line. Error bars indicate standard deviations.

Besides the high water consumption, a big disadvantage of the simulated system is
that the growth medium must be discharged after 175 days, at the end of the growing
season. Discharging this quantity of growth medium involves some practical problems, as
the medium is too salty to be discharged into nature as a single flush. A possible solution is
to opt for 175 days of duckweed growth in one year and then to gradually discharge for
the rest of the year until the system is empty on the 365th day, as illustrated in Figure 1.

2.2. Duckweed Cultivation on NDNE (Tray Experiments 2 and 3)
2.2.1. NDNE as a Growing Medium

The simulation discussed in the previous section focuses on a system that treats NDNE
and LF till a dischargeable effluent is obtained. However, it might be more interesting to
treat a higher concentration of NDNE in a continuous system to achieve a higher biomass
production and to reduce the water consumption needed for dilution. The purpose of
the system is then changed from ‘treating a waste stream as a stand-alone system to a
dischargeable effluent’ to ‘production of protein-rich biomass with recycled nutrients’. In
order to still obtain a dischargeable effluent at the end, the system can be combined with a
constructed wetland using reedbeds as a final purification step.

To assess the maximum accepted waste stream concentration to minimize the needed
dilution, a second tray experiment was done. Nine different dilutions/treatments of NDNE
were tested (Table A2). It was investigated if the cultivation of duckweed on a biological
medium (after dilution, addition of a salt solution or evaporation) resulted in better or
worse growth compared to cultivation on a synthetic nutrient medium. In Figure 4, the
RGR inhibition and the chlorophyll inhibition of the duckweed grown on different media
are shown.

Surprisingly, the different dilutions and the undiluted NDNE showed no RGR in-
hibition compared to the reference medium. Even for the treatments where the EC was
artificially increased there was only a significantly higher RGR inhibition after evaporation
until an EC of 11.8 mS/cm was obtained (p = 2.38 × 10—9). However, for chlorophyll
inhibition, a different trend was shown. There was a significantly higher chlorophyll inhibi-
tion for the undiluted NDNE and for most of the treatments where the EC was increased,
indicating plant stress. For the diluted NDNE to an EC of 4, 6, or 8 mS/cm, the chlorophyll
inhibitions were significantly lower than the reference (p = 1.48 × 10−6, 1.77 × 10−12 and
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1.28 × 10−13, respectively). The RGR and chlorophyll inhibitions of these dilutions were
even below 0%.

Figure 4. The relative growth rate inhibition (A) and the chlorophyll inhibition (B) of duckweed
cultivated in different dilutions of NDNE, and NDNE to which a salt solution was added and in
NDNE ’concentrated’ after evaporation. On the x-axis, the EC values and respectively the percentage
of dilution, the concentration of salt solution or the percentage of evaporation are given. Significant
differences (n = 4 and p < 0.05) per graph are indicated by different letters. Error bars indicate
standard deviations.

From the results shown in Figure 4, we can conclude that duckweed grew better on
the diluted NDNE than on the reference medium. This is surprising, as the N medium is
described in the literature as one of the best nutrient media used to support the fast growth
of duckweed [24]. A possible explanation lies in the presence of organic components in
the used waste streams. Organic matter contains humic substances that can be divided
into three classes: fulvic acids (FA), humic acid (HA), and humin [25]. Humic substances
might increase the uptake of both macro and micronutrients, such as N, P, K, Fe and
Zn [26]. Additionally, they might also reduce the plant uptake of certain toxic metal
ions, like Cd [27]. Thus, one might reason that the application of humic substances could
improve plant response to salinity. However, in the literature, opinions are very much
divided on this hypothesis. Liu et al., studied the influence of HA on the salt tolerance of
hydroponically grown creeping bentgrass. They found out that, in general, the application
of HA did not improve the salinity tolerance of the plant [28]. However, different findings
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were observed for other crops. Ghulam et al., studied the influence of HA on salt tolerance
and nutrient uptake in wheat. They found out that a combined application of K and HA
was promising for increasing wheat salt tolerance and nutrient uptake [29]. As both studies
show very different results and worked with other crops than duckweed, it is difficult
to make any concrete conclusions other than a possible indication that duckweed might
behave like wheat and have higher salt tolerance in the presence of humic substances.
Another explanation lies in the form in which nitrogen is present in the growth medium.
Ammonium is the preferred nitrogen source of duckweed [30] and NDNE has more nitrogen
present in the form of ammonium compared to the reference medium (Table A1), in which
all the nitrogen is present in the form of nitrate.

In this study, it was shown that the duckweed grew better on the diluted NDNE media
than on the reference medium. However, it should be considered that only data on growth
and chlorophyll concentration was studied here. Osmotic stress can cause a reduction in
protein concentration. Therefore, an important next step to this study should be biomass
quality assessment of the duckweed grown on these different media.

2.2.2. Salt Tolerance of Duckweed

From the previous tray experiment, it seemed that duckweed is less salt-sensitive
when grown on a biological medium compared to when grown on a synthetic medium. In
order to better understand the salt tolerance of duckweed, an additional tray experiment
was done. In this third experiment, a dose-response curve of Lemna minor was determined
after adding different concentrations of NaCl to the synthetic reference medium. This
approach is similar to how toxicity tests are usually done in literature [31]. However, this
may not be the best way to determine salt tolerance as it is also important to take into
account the ratio of certain elements. This was already demonstrated for the Mg/Ca ratio
for example. Therefore, the results of this tray experiment were compared with another
experiment where the same amount of Na+ was added to a synthetic medium by adding a
mixture of NaCl, Na2SO4 and K2SO4. This mixture had an SO4

2−/Cl− ratio of 0.25, similar
to the ratio measured in NDNE in our previous research.

In Figure 5 both the RGR- and the chlorophyll inhibition are plotted as a function
of the EC and the concentration of sodium in the mixture. It is shown that the EC is
lower when Na+ is added as NaCl than when the same concentration of Na+ is added
as a combination of NaCl, Na2SO4 and K2SO4. This is because SO4

2− has twice as many
charges as Cl− and will therefore have a greater influence on the conductivity. Next,
it was shown that the RGR inhibition was significantly higher at a certain EC when
only NaCl was added compared to when a combination of NaCl, Na2SO4 and K2SO4
was added. A significant higher growth inhibition was observed after adding 46.6 mM
Cl− to the medium (up to EC = 6.51–6.65 mS/cm), compared to the reference medium
(0 mM NaCl added—EC = 1.5 mS/cm) (p = 2 × 10−3 for pre-cultivation, p < 1.08 × 10−9

for cultivation).
Remarkably, when adding a combination of Cl− and SO4

2−, a significantly higher
tolerance was observed in terms of growth inhibition in function of the EC, as total growth
inhibition was only obtained after the addition of 37.3 mM Cl− and 9.32 mM SO4

2− to the
medium (up to EC = 8.18–8.43 mS/cm) (p = 4.88 × 10−7 for cultivation). Presumably, total
inhibition could have occurred even at lower concentrations than 46.6 mM NaCl. Therefore,
it may be assumed that, in a synthetic medium, the duckweed was less inhibited when an
equal amount of Cl−/SO4

2− was added than when only Cl− was added.
The same trends are shown in Figure 5C,D for chlorophyll inhibition. However, it

is possible to see significant differences at lower EC values or after the addition of lower
Na+ concentrations. A significantly higher chlorophyll inhibition was observed for pre-
cultivation after adding 18 mM Cl− to the medium (up to EC = 3.5 mS/cm), compared
to the reference medium (0 mM NaCl added—EC = 1.5 mS/cm) (p = 3.24 × 10−4 for
pre-cult). Remarkably, when adding a combination of Cl− and SO4

2− ions, a significantly
higher tolerance was observed for the pre-cultivation, in terms of both growth inhibition
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in function of the EC and the Na+ concentration. However, total chlorophyll inhibition
was only obtained for the pre-cultivation after the addition of 25.6 mM Cl− and 6.4 mM
SO4

2− to the medium (up to EC = 6.25 mS/cm) (p = 2.19 × 10−3). For the cultivation step,
there was, for both experiments, a significant chlorophyll inhibition after the addition of
32 mM Na+ (up to EC = 4.96–5.05 for Cl− addition; EC = 6.25–6.44 for Cl− and SO4

2−

addition) (p = 1.02 × 10−5 for Cl− addition; p = 5.63 × 10−5 for Cl− and SO4
2− addition).

The chlorophyll content of a plant can be used as a measure to assess oxidative damage
in salt treatments. Oxidative stress is usual before a decrease in growth or die-off. In this
sense, it is expected that chlorophyll inhibition already occurs at lower concentrations and
EC values.

Figure 5. The relative growth rate inhibition of duckweed cultivated on a synthetic medium after
NaCl addition (A) or NaCl, Na2SO4 and K2SO4 addition (B); the chlorophyll inhibition of duckweed
cultivated on a synthetic medium after NaCl addition (C); or NaCl, Na2SO4 and K2SO4 addition (D).
On the x-axis both the EC and the concentration of sodium in the medium is shown. A distinction is
made between pre-cultivation and cultivation. For the inhibitions of the first experiment (A,C) there
was no data obtained for the duckweed during cultivation grown on a medium with 46.6 and 60.9 mM
Na due to die-off; therefore, in the RGRinh graph, a default value of 100% inhibition was taken
(= no growth). Significant differences (n = 4 and p < 0.05) per graph are indicated by different letters.
Error bars indicate standard deviations.

To conclude, in this experiment, duckweed was less inhibited when an equal amount
of Cl−/SO4

2− was added than when only Cl− was added. This proves that the composition
of the anions plays a role in the salt tolerance of duckweed. As a result, the observation from
the previous experiment that duckweed is less salt-sensitive when grown on a biological
medium may be partly explained by the composition of the anions in this medium.
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2.2.3. Variation in NDNE

From the second tray test, it could be concluded that the best medium for duckweed
consists of a mixture of 75% NDNE and 25% demineralized water (EC = 8), both in terms
of growth and chlorophyll concentration. However, the composition of the NDNE is not
constant over time. In order to demonstrate that variation, the EC of NDNE was monitored
in situ in a treatment facility. Over the same period, also the precipitation was monitored to
calculate the dilution of the treatment system over its retention period (36 days).

Figure 6 shows that there is variation in the EC of NDNE over time. In fact, for 49% of
the time, the measured EC was higher than 10.9 mS/cm, which is the maximal EC for
duckweed survival according to Landolt et al. [9].

Figure 6. Electric conductivity (EC) measured in the aerobic tank (last tank) of a biological pig
manure treatment system, together with the cumulative precipitation that could enter the system
over a retention time of 36 days. Additionally, a corrected EC was calculated for the dilution
from precipitation.

It was investigated whether the precipitation influenced the variation of the EC,
as the rainwater that enters the system may dilute the stream and thus lower the EC,
causing a higher variation. In this way, a lower EC could be expected in periods with
high precipitation. To visualise this impact in the graph, a corrected EC was calculated
by assuming that the rainwater entering the NDNE has an EC of 0. This leads to an
underestimation but clearly shows that rainwater has no to little effect on the variation of
the EC on NDNE.

More likely, the variable concentration of anions and cations in the NDNE is mainly
caused by variations in the inlet stream and other process parameters. In this case, the
monitored pig manure processing treatment has an inlet stream that consists of a combi-
nation of manure from fattening pigs and sows. The manure of sows is worth more for
fertilisation and is preferred in times of high demand. Thus, around 10/05, the manure of
sows was all diverted for fertilizing the lands. Hence, the manure from fattening pigs was
fed to the treatment. The latter is thicker and has a higher conductivity. As a result, we can
observe increasing conductivity from then on.

To conclude, the variation of the source material determines to a large extent the
variation in the final growth medium. This variation can be reduced by the installation of
buffering or storage lagoons, which would allow for a more stable effluent composition
and an easier formulation of an adequate medium for duckweed growth on NDNE.
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3. Materials and Methods
3.1. Tray Experiments
3.1.1. Experimental Conditions

Duckweed growth experiments were executed in PET containers (0.266 × 0.165 × 0.119 m)
on a growth rack under laboratory conditions, as shown in Figure 7. The used contain-
ers were opaque to avoid light penetration through the walls and hence inhibit algae
growth [32]. The total tray volume was 5.2 L, the surface area was 438.9 cm2 and the trays
were filled with 3 kg of growth medium for each experiment. The growth rack consisted of
two operative levels. Each level could accommodate 10 containers, adding up to a total of
maximally 20 containers per experiment.

Figure 7. Picture of the growth rack used for all tray experiments, with 10 PET containers and
4 parallel TL-lights per level.

Light was provided in a 16:8 h light-darkness regime by 4 parallel TL-light (TLD
36 w/86, Philips, the Netherlands) per level. Light intensity (PPFD, or photosynthetic pho-
ton flux density) ranged between 110–150 µmol/m2/s and was measured at the respective
duckweed mat level in the trays, in the centre of each tray. The simulation experiment took
place in a climate chamber with a temperature of 25 ± 1 ◦C and air humidity of 70 ± 2%.
The second tray experiment took place in the lab at a room temperature of 23 ± 2 ◦C.

To compensate for light asymmetry, the trays that were filled with the reference
medium were placed in the centre of the rack. In this way, the reference was favoured over
the other treatments. For the second experiment, where different dilutions and treatments
of NDNE were used as a growing medium, a rotation scheme was designed to compensate
for light asymmetry. A 5-period rotation was applied to keep each container in each
row for the same time on each position. Besides, the water level was weight-adjusted
with demineralized water to compensate for evaporation, solution mixing and to counter
possible heat effects.

Plant material was sourced from a natural pond in Rumbeke-Beitem, Belgium. Visual
determination according to [33] clarified that duckweed plants belonged to the Lemna
minor species. The identification of the duckweed species was performed using molecular
barcoding based on plastidic markers prior to the experiment [34].

Plant density was selected based on the work of Monette et al., to ensure total coverage
of the water surface to minimize algae growth [35]. Since the overall goal was to obtain
maximal biomass production, rather than maximal relative growth rate, a relatively high
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initial density of 30 g fresh weight (FW) was inoculated in the trays. Therefore, the density
at the start of each cultivation was equal to 683.53 g/m2.

3.1.2. Experimental Design

Three experiments were conducted where the dose-response curve of Lemna minor was
determined. In the first experiment, waste streams from a pig manure treatment process at a
pig farm in Pittem, Flanders (Belgium) were used to make the growth media. In the second
experiment, NDNE from another pig manure treatment process in Flanders (Belgium) at
IVACO, Eernegem was used. The latter was also the same manure treatment plant on
which the EC of the NDNE was monitored. In the third experiment, duckweed was grown
on a synthetic medium to which different concentrations of salt solutions were added.

The reference synthetic nutrient medium used in all experiments was the N medium
as described in the ISCDRA newsletter [24]. The reference article for this medium was
written by Appenroth et al. and these researchers stated that they “never found a nutrient
media that supported a faster growth of duckweed than this one” [36]. The N medium was
prepared as concentrated stock solutions (Table A1), of which 5 mL was taken for each litre
of growth solution.

For each experiment, the pH of the reference medium was adjusted to 6–6.5 with 0.1 M
NaOH. The other growth media used in the different experiments were also adjusted to the
same pH, by adding either NaOH or HCl. For the first experiment, the pH of the growth
media, other than the reference, was adjusted to the same pH as the start medium, which
was 8.1 ± 1.

Tray Experiment 1: Simulation of a Continuous Duckweed Cultivation System

The growing medium of a continuous system with a depth of 1 m, 0.7 m or 0.4 m
was simulated at the beginning and at the end of the growing season (175 days). In this
tray experiment the depth of the simulated continuous system was determined. It should
be stressed that the parameter of depth is a simulation using the assumption of a fixed
nutrient accumulation during a growing period of 175 days. The experiment could also
be interpreted as a pond with a fixed depth and where different periods of growth would
be simulated if the pond would be placed in a region with a more suitable climate. For
example, if the depth is fixed to 1 m, the treatments originally described as: ‘1 m’, ‘0.7 m’
and ‘0.4 m’ would then be described as: ‘after 175 days’, ‘250 days’ and ‘438 days’, as
calculated with the same simulation model using a non-linear solver technique.

To prepare the different growth media for this experiment, the N, P, K, S, Mg, Ca, Fe,
Zn and Cl concentrations of the NDNE and the LF that would be added to the system were
analysed. Next, the concentrations of LF, NDNE, and RW at the start of the growing season
in the simulated system were determined using a non-linear solver technique. This was
possible due to the following constrictions:

• All fractions of LF, NDNE, and RW are greater than zero;
• The sum of the fractions of LF, NDNE and RW equals 100%;
• The total N and P contents of the final mixture are below the discharge limits in

Flanders (Belgium) [37];
• The N/P ratio of the medium equals 7.3, as this is the ratio between the N removal

and P removal determined in an outdoor duckweed system, with diluted NDNE as
the growing medium [19]

The most important restrictions are that the N and P concentrations of the effluent
must not exceed the discharge limits in Belgium (resp. 15 and 2 mg/L) [37] and that the N
and P removal of the system has to be the same as the N and P addition.

For the preparation of the different growth media, demineralized water (DW) was
used instead of rainwater. The results of the non-linear solver technique, and thus the
composition of the growing medium at the start of the growing season in the simulated
continuous system, are given in Table 1.
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Table 1. The total N, total P and the N to P ratio of the LF, NDNE and DW, together with the calculated
composition of the mixture after a non-linear solver technique maximising the NDNE composition
within presented restrictions.

Total N (mg/kg) Total P (mg/kg) N:P Ratio Mass Fraction (%)

LF 3440 191 0.1
NDNE 725 115 1.6

DW 0 0 98.3
Mixture 14.9 2 7.4 100

Restrictions 15 2 7.4 100

Next, the non-linear solver technique was used to calculate the accumulation coef-
ficients of N, P, K, S, Mg, Ca, Fe, Zn and Cl. With these coefficients, it was possible to
determine the concentrations of these elements in the growth medium of the system after
one growing season, at a variable depth. For these calculations, it was assumed that the
overall removal of the different nutrients by the system will be the same as the mean overall
removal measured by Devlamynck et al. [19]. The calculated concentrations of the growth
media are shown in Table 2.

Table 2. The simulated nutrient concentrations of the different growth media were calculated using a
non-linear solver technique. ‘Start’ = the composition of the growing medium of a continuous system
at the start of the growing season; ‘1 m’/‘0.7 m’/‘0.4 m’ = the composition of the growing medium of
a continuous system after 175 days of cultivation in a 1 m/0.7 m/0.4 m deep tank.

Start After One Growing Season

Nutrient
(mg/L) (All Depths) 1 m 0.7 m 0.4 m

N 14.86 16.82 17.65 19.75
P 2.03 2.75 3.06 3.83
K 60.15 839.63 1173.70 2008.86

T-S 5.14 64.65 90.15 153.90
Mg 0.76 5.19 7.09 11.84
Ca 3.16 2.49 2.20 1.47
Fe 0.78 3.29 4.37 7.06
Zn 0.17 2.04 2.84 4.85
Cl 39.11 554.12 774.85 1326.65

Duckweed was grown on five different growth media. A reference medium (Table A1),
a starting medium and three growing media with the same composition as at the end of
the growing season depending on the depth of the tank. These last three growth media
were prepared by adding extra nutrients via a specific salt solution in order to obtain the
concentrations as shown in Table 2.

All growth media were prepared in volumes of 15 kg. Thus, for the starting medium,
15 g LF was mixed with 235 g NDNE and 14.749 kg DW. For the other growth media, 1 kg of
the mass of the DW was replaced by 1 kg of a specific salt solution (Table A4). Afterwards,
these growth media were divided into volumes of 3 kg for the tray experiment.

Cl− was added by using NaCl and HCl. HCl was added via titration until a pH equal
to that of the starting medium (8–8.2) was obtained. The necessary Cl− concentration was
then obtained by adding NaCl.

Tray Experiment 2: Different Dilutions/Treatments of NDNE

In the second tray experiment, it was determined to what extent NDNE is a suitable
medium for duckweed cultivation. A dose-response curve with nine different growing me-
dia was set up (Table A2): (i) a reference medium (EC of 1.5 mS/cm); (ii, iii, and iv) NDNE
diluted with demineralized water until an EC equal to 4, 6 and 8 mS/cm; and (v) undiluted
NDNE (EC of 9.8 mS/cm).
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In reality, the EC can even exceed 9.8 mS/cm. Therefore, these situations were mim-
icked by (vi and vii) spiking NDNE with a salt solution containing 237.4 mmol/L Na2SO4,
923.5 mmol/l KCl and 128 mmol/L NaCl until an EC of 11.4 and 11.8 mS/cm; and sec-
ondly by (viii and ix) heating NDNE until enough water was evaporated to reach an EC of
11.4 and 11.8 mS/cm.

Tray Experiment 3: Salt Tolerance Experiment

Two dose-response tests were conducted on synthetic media. For the first, only NaCl
was added to the synthetic medium. In the second, the salt composition of NDNE was
mimicked by adding a combination of salts in order to have a Cl/SO4 ratio of 4:1 which is
similar to the ratio found in the NDNE from previous analyses.

Therefore NaCl, Na2SO4 and K2SO4 were added as Na+, K+, Cl−, SO4
2− with a molar

ratio of 5:1:4:1 (Table 3). The amount of Na+ ions were equal for both experiments.

Table 3. Salt concentrations added to the synthetic N medium during the first two salt experiments.
The EC values were temperature corrected, and the interval gives the maximal range of measured
values (at t0 and t1). Treatment n◦1 of both experiments served as a reference.

N◦ NaCl (mM) Na2SO4 (mM) K2SO4 (mM) EC (mS/cm)

Treatment
NaCl

1 0.0 - - 1.6–1.6
2 18 - - 3.5–3.6
3 32 - - 5.0–5.1
4 46.6 - - 6.5–6.7
5 60.9 - - 8.0–8.0

Treatment
Cl/SO4

(Ratio 4:1)

1 0.0 - - 1.8–1.8
2 14.4 1.8 1.8 4.2–4.4
3 25.6 3.2 3.2 6.3–6.4
4 37.3 4.7 4.7 8.2–8.4
5 48.7 6.1 6.1 10.1–10.3

For both experiments, the pH was corrected by the addition of NaOH. Hence, this
caused the addition of an amount of additional Na+ in the different treatments; nevertheless,
this was considered negligible. Water and biomass samples were taken before inoculation
(t0), at the end of week 1 (t1) (pre-cultivation) and at the end of week 2 (t2) (cultivation).

3.1.3. Experimental Duration

The OECD guidelines describe a test period of 1 week as sufficient for toxicity tests [38].
However, phenomena such as luxury consumption have been described before [39]. As a
result, a ‘lag phase’ in response curves might occur. Therefore a pre-cultivation period of
1 to 2 weeks was conducted on the same growing media to make sure that duckweed was
adapted to the different conditions before the measurements were made. For experiments
2 and 3, the cultivation on the different growth media lasted for 1 week. However, for
experiment 1, the cultivation period lasted for 3 days to prevent the depletion of N and P
levels in the media.

3.1.4. Analytical Methods
Plant FW and DW Determination

Harvested duckweed material was measured both in terms of fresh (FW) and dry
weight (DW). First, harvested fresh plant material was rinsed with tap water and drip-
dried for 5 min in a fine mesh fishing net. Hereafter, the duckweed mass in the net was
dried 2 times with a 5-folded paper towel for approx. 10 min. Afterwards, the duckweed
pack was transferred from the net to aluminium cups and weighed on a balance (LA
320P, Sartorius Lab Instruments, Göttingen, Germany). Once the FW was determined and
biomass for chlorophyll determination was separated, the samples in the aluminium cups
were put in a drying oven at a low temperature (~60 ◦C) for a minimum of 3 days.
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Plant Chlorophyll Content

To assess oxidative damage in the salt treatments, chlorophyll content was measured
as an indicator via an ethanol extraction, as done by Liu et al. [40]. Therefore, 0.8 g FW
was subsequently transferred into 40 mL of a 95% ethanol solution, stored for 5 days
in the dark at room temperature, and centrifuged at 2790 rpm for 10 min (Centrifuge
5804 R, Eppendorf, Belgium) where after the supernatant was analysed with a UV-VIS
spectrophotometer at 663 and 645 nm (Uvikon XL, Biotek Instruments, Santa Clara, CA,
USA) to obtain chlorophyll contents. The concentrations of chlorophyll were calculated
according to Huang et al. [41]:

Ca

[mg
L

]
= 12.72A663 + 2.69A645 (1)

Cb

[mg
L

]
= 22.90A645 − 4.68A663 (2)

Cchl

[mg
L

]
= Ca + Cb (3)

where Ca, Cb and Cchl represent the content of chlorophyll a, chlorophyll b, and total
chlorophyll, respectively; A663 and A645 are the absorbances at 663 and 645 nm, respectively.

Compositional Analysis of Duckweed

The total N content (T-N) of the duckweed was determined before and after cultivation.
A CN analyser (Primacs SNC-100, Skalar, Breda, The Netherlands) was used to determine
the total nitrogen content in the duckweed. With the T-N content, the N removal and
uptake of the plant were calculated.

For plant Ca, Mg, Na, K, P, S, Al, Cu, Fe, Mn and Zn content before and after cultivation,
dried plant material, to which 65% HNO3 was added, was first digested in a microwave
(Milstone Ultrawave, SRC technology). Next, samples were accordingly diluted prior to
elemental determination with inductively coupled plasma-optical emission spectrometry
(ICP-OES) (Vista-MPX, Varian Inc., Palo Alto, CA, USA).

Analysis of NDNE, LF and Growing Media

For the determination of the T-N content of the undiluted NDNE and LF, the same CN
analyser was used. However, as it was expected that the liquid samples contained nitrate
and ammonia, 4 times the sample weight of sucrose and 1–2 drops of 20% o-Phosphoric
acid solution were added to the crucibles before T-N analysis to maximize the N yield from
NO3

− and NH4
+ in the sample.

For the determination of Ca, Mg, Na, K, P, S, Cu, Fe, Mn and Zn concentrations in the
waste streams and the more diluted growth media before and after cultivation, the samples
were first digested on a hot plate with a solution of H2O2 and HNO3 (65%) in a 1:2 ratio for
30 min. After this, the sample was checked for its transparency. If the sample was still not
transparent, then H2O2 and HNO3 were again added at the same ratio used to continue the
digestion until a transparent sample was obtained. Then the sample was filtered through a
Whatman, grade 5 filter paper and diluted with milli-Q. Next, samples were accordingly
diluted prior to elemental determination with ICP-OES.

The determination of Cl−, NO3
−, PO4

3−, SO4
2− in the water samples was done using

ion chromatography (761 Compact Ion Chromatograph, Methrom, Herisau, Switzerland),
preceded by 0.45 µm syringe filtration and dilution.

Finally, pH and electric conductivity (EC) was measured with a pH-meter (ProfiLine
pH 3110, WTW, Weilheim, Germany) and a conductivity tester, respectively (ProfiLine
Cond 3110, WTW, Weilheim, Germany).

3.2. In Situ Monitoring of NDNE

At the pig farm of IVACO, Eernegem, Belgium, pig manure is treated by a combination
of centrifugation and subsequent biological treatment (Trevi, Ghent, Belgium) of the liquid
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fraction (LF). The loading rate is 20 m3/day and the total retention time is 36 days. LF
has a higher content of N and a higher N/P ratio than the solid fraction. NDNE is the
result of the biological treatment process and was monitored from 26 November 2019, until
28 June 2020. For this, a solar power-driven 3798-S digital inductive electrical conductivity
sensor (Hach, Belgium) was installed in the aeration tank in the last step of the process, as
shown in Figure 1.

In order to assess the influence of weather conditions on conductivity, the monitored
EC values were compared with climatological data obtained from the Royal Meteorological
Institute. The climatological data also ran from 26 November 2019, to 28 June 2020. It was
calculated how much water entered the manure treatment through precipitation. For this,
the retention time of the system (36 days) and that of the different tanks individually were
taken into account. For example, when one drop of rainwater enters the first step/tank of
the treatment process, it will stay in the process until it leaves the last tank in the treatment
(at day 36). Taking this into account, the cumulative precipitation was determined.

The biological manure treatment system of IVACO is divided into 4 tanks, 2 anaerobic
and aerobic. For each tank, the cumulative precipitation was calculated as follows:

CPk = ∑n
i=0 Pi∗

tn − i
tn

, (4)

with CPk as the cumulative precipitation for tank k, Pi the precipitation on day i and with n
the retention time (in days) of the specific tank. Next, the total cumulative precipitation for
the whole system was calculated as follows:

CPtot = ∑4
k=1 CPk∗

Ak
Atot

, (5)

with Ak as the surface area of tank k of the system and Atot the total surface area of the
system. With this total cumulative precipitation, the corrected EC was calculated as follows:

ECcor =
ECmeasured

1 −
(

CPtot
1000 ∗Atot

Vtot

) , (6)

with Ak and Vtot the total surface area and volume of the manure treatment system.

3.3. Calculations and Statistics

The relative growth rate was calculated based on the dry weight as follows [42]:

RGR [g/g/d] =
ln(DWe)− ln(DWi)

t2−t1
, (7)

with DWe and DWi representing respectively the dry weight of duckweed after (t2) and
before (t1) cultivation. To make it possible to compare data from different experiments, the
relative growth rate inhibition was also calculated:

RGRinhibitioni [%] = 1 − RGRi

mean
(

RGRre f

) , (8)

with RGRref representing the RGR of the reference medium of the experiment. For experi-
ment 1, where a continuous system was simulated, the start medium was chosen as the
reference RGR. For experiments 2 and 3, the synthetic medium without the addition of
extra salts was chosen as the reference RGR.
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The same was done for the total chlorophyll concentration, the relative chlorophyll
concentration was calculated as follows:

Chlorophyll inhibitioni [%] = 1 − CChl i

mean
(

CChl re f

) (9)

with CChl ref, representing the total chlorophyll concentration of the reference medium of the
experiment. The same references were chosen as for the calculation of the RGR inhibition.

Nutrient uptake/recovery rates were calculated considering the dry weight gain as
well as the change in nutrient content in the biomass as follows:

Nutrient uptake
[
g/m2/d

]
=

Ci ∗ DWi − C0 ∗ DW0

area∗ t2 − t1
(10)

with c0 and ci representing respectively the content of the specific nutrient in the plant
before and after cultivation. For these concentrations, a correction was always made for the
amount of water that evaporated during the cultivation step.

Nutrient removal by the system was calculated considering the nutrient concentrations
of the growing media before and after cultivation as follows:

Nutrient removal
[
g/m2/d

]
=

c0 − ci
area ∗ (t2 − t1)

, (11)

with c0 and ci representing respectively the content of the specific nutrient in the plant
before and after cultivation. These concentrations were also corrected for the amount of
water that evaporated during the cultivation step.

Microsoft Excel and R Statistical Software (v3.6.1, R Core Team 2019, Vienna, Austria)
were used for statistical data processing and visual display. To show significant differences
between the treatments in the experiments, parametric analyses such as one-way ANOVA,
two-way ANOVA and Tukey’s HSD tests were performed. These tests were only used if all
conditions were met. The condition of whether the residuals are normally distributed or
not was checked graphically by constructing qq-plots and numerically via the Shapiro-Wilk
test. Homoscedasticity of the variations was checked graphically using box plots and
numerically using the Modified Levene’s-Test. If these conditions for these parametric
analyses were not met, significant differences were demonstrated using the Kurskal-Wallis
test followed by a post hoc Dunn’s-Test. A significance value of 5% was used for all analyses,
and in all cases the sample size (n) was equal to four.

4. Conclusions

This study showed that a continuous duckweed cultivation system can be used for
the treatment of NDNE and the simultaneous provision of protein-rich biomass on a large
scale. It was shown, however, that it is important to take into account that salts accumulate
in long operating systems when their concentration added via the waste stream is higher
than the concentration that can be removed by the system. This study concluded that,
when duckweed is grown in a system with a continuous supply of NDNE and LF and a
continuous discharge that meets the legal standards in Flanders (Belgium) (15 mg N/L
and 2 mg P/L), a buffering capacity of at least 1 m depth is needed. This would ensure
that the relative growth would not be inhibited at the end of the growing season compared
to the start of the cultivation. However, in that case, this stand-alone treatment system
would consume around 5 to 10 times more water than other crops such as maize. On the
other hand, it was observed that duckweed grew better on NDNE (till 75% NDNE, or
EC of 8 mS/cm) than on the reference N-medium, indicating that a lower dilution rate
might be used if the duckweed system would be connected to a wetland for reaching the
dischargeable legal limits. This study showed that the ratio of anions can partly explain
this higher salt tolerance when grown on NDNE, but other mechanics remain uncovered.
It is suggested that organic substances might have an effect on reducing salt stress. This
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observation increases the potential of using pig manure waste streams for duckweed
cultivation. However, it was demonstrated by in-situ monitoring of the NDNE of a manure
treatment plant that the composition of NDNE is not constant over time. Therefore, the
optimal dilution found in the tray test is only temporarily valid. Further research on the
operation of such a system, with the accumulation of elements taken into account, was
shown to be relevant for the future application of this technology.
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Appendix A

Table A1. Composition of the N medium as described by the duckweed ISCDRA forum volume 3.5 [24].

Stock Composition Stock Concentration Final Concentration

1 KH2PO4 0.2 M 1 mM
2 Ca(NO3)2.4H2O 0.2 M 1 mM
3 KNO3 1.6 M 8 mM

H3BO3 1 mM 5 µM
MnCl2.4H2O 2.6 mM 13 µM

Na2MoO4.2H2O 80 µM 0.4 µM
MgSO4.7H2O 0.2 M 1 mM

4 FeNaEDTA 5 mM 25 µM

Table A2. The different treatments used to test the salt tolerance in (adapted) NDNE. Treatment n◦1:
the reference medium; n◦2,3,4 different dilutions of NDNE with demineralized water; n◦5 undiluted
NDNE; n◦6,7 NDNE after evaporation; n◦ 8,9 NDNE with addition of a salt solution.

N◦ EC (mS/cm) Dilution (%NDNE) Evaporated (%) Salt Solution (mL/kg)

1 1.5 - - -
2 4 37 - -
3 6 54 - -
4 8 75 - -
5 9.8 - - -
6 11.4 - - 9.5
7 11.8 - - 11.4
8 11.4 - 22.5 -
9 11.8 - 19.3 -

www.vlaio.be
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Table A3. Summary of the optimal and maximal growing ranges of Lemna minor, in which duckweed
growth either is optimal or theoretically impossible [9,23].

Optimal Growing Ranges Maximal Growing Ranges Unit

pH 6.5–7.5 α 5.0–9.0 α

EC 0.6–1.4 α 0–10.9 α mS/cm
NO3_N 70–700 α 0–1400 α mg/L
NO2_N mg/L
NH4_N 45–90 α 9–1350 α mg/L
T-DIN mg/L

P 0.4–11 α 0–55 α mg/L
K 39–780 α 0–2000 α mg/L
Cl 0.4–36 α 0–3500 α mg/L

SO4
2− 48–1900 α 0–4800 α mg/L

Ca 20–400 α 0–2000 α mg/L
Mg 5.0–97 α 0–1200 α mg/L
Na 120–230 α 0–3400 α mg/L

H2CO3 mg/L
B <17.3 β <86.5 β mg/L
Fe <27.9 β <100 β mg/L
Mn <54.9 β <274.5 β mg/L
Cu <3.2 β <6.3 β mg/L
Zn <6.5 β <65.3 β mg/L

α [9]; β [23].

Table A4. Composition of the salt solutions that were added to the growth media that simulate the
growing medium of a continuous system after 175 days of cultivation in a 1 m/0.7 m/0.4 m deep
tank. DW = demi-water.

1 m 0.7 m 0.4 m

m% m% m%

K2CO3 1.735 2.478 4.337
K2SO4 0.418 0.597 1.045

MgSO4.7H2O 0.067 0.096 0.169
FeSO4.7H2O 0.019 0.027 0.047
ZnSO4.7H2O 0.012 0.018 0.031

NaCl 0.837 1.221 2.395
HCl 0.017 0.016 0.033
DW 96.640 95.195 91.484

Table A5. The measured composition of the simulated nutrient concentration of the different growth
media before the cultivation step in the experiment ± standard deviations (LOQ stands for limit
of quantification). ‘Start’ = the composition of the growing medium of a continuous system at the
start of the growing season; ‘1 m’/‘0.7 m’/‘0.4 m’ = the composition of the growing medium of a
continuous system after 175 days of cultivation in a 1 m/0.7 m/0.4 m deep tank.

Ref Start 1 m 0.7 m 0.4 m

Ca mg/L 38.24 ± 1.15 2.47 ± 0.08 2.33 ± 0.04 1.97 ± 0.07 1.89 ± 0.06
Mg mg/L 21.35 ± 0.89 0.69 ± 0.02 4.36 ± 0.03 4.36 ± 0.03 11.46 ± 0.37
Na mg/L 8.25 ± 0.47 19.35 ± 0.78 145.9 ± 1.37 145.9 ± 1.37 427.6 ± 2.96
K mg/L 313.76 ± 3.56 64.28 ± 1.04 585.1 ± 6.6 585.1 ± 6.6 1539.86 ± 10.6
P mg/L 31.05 ± 0.62 1.67 ± 0 1.81 ± 0 1.81 ± 0 2.13 ± 0
S mg/L 29.22 ± 0.19 4.96 ± 0.29 56.94 ± 0.62 56.94 ± 0.62 155.83 ± 3.16

Cu mg/L 0.02 ± 0 0.05 ± 0 0.06 ± 0 0.06 ± 0 0.06 ± 0.01
Fe mg/L 1.19 ± 0.03 0.53 ± 0.04 2.46 ± 0.04 2.46 ± 0.04 6.36 ± 0.3
Mn mg/L 0.67 ± 0.03 0.02 ± 0 0.01 ± 0 0.01 ± 0 0.01 ± 0
Zn mg/L 0.02 ± 0.01 0.12 ± 0 1.63 ± 0.03 1.63 ± 0.03 4.28 ± 0.19
Cl mg/L 208.27 ± 40.06 49.12 ± 1.85 671.4 ± 50.05 671.4 ± 50.05 1753.43 ± 86.35

NO3 mg/L 608.79 ± 6.56 6.68 ± 1.21 51.96 ± 1.58 51.96 ± 1.58 <LOQ
PO4 mg/L 99.71 ± 4.63 5.05 ± 0.34 <LOQ <LOQ <LOQ
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Table A6. The measured composition of the simulated nutrient concentration of the different growth
media after the cultivation step in the experiment ± standard deviations (LOQ stands for limit of
quantification). ‘Start’ = the composition of the growing medium of a continuous system at the start of
the growing season; ‘1 m’/‘0.7 m’/‘0.4 m’ = the composition of the growing medium of a continuous
system after 175 days of cultivation in a 1 m/0.7 m/0.4 m deep tank.

Ref Start 1 m 0.7 m 0.4 m

Ca mg/L 50.63 ± 3.13 3.26 ± 0.3 6.1 ± 0.28 5.61 ± 0.85 1.89 ± 0.06
Mg mg/L 27.58 ± 1.37 0.51 ± 0.04 6.12 ± 0.28 7.81 ± 0.37 11.46 ± 0.37
Na mg/L 12.68 ± 0.34 23.79 ± 1.41 200.42 ± 3.11 317.07 ± 11.09 427.6 ± 2.96
K mg/L 365.02 ± 26.02 71.98 ± 2.72 807.4 ± 17.85 1093.37 ± 61.69 1539.86 ± 10.6
P mg/L 38.46 ± 2.82 1.36 ± 0 4.37 ± 0.34 4.51 ± 0.5 2.13 ± 0
S mg/L 34.68 ± 1.97 6.32 ± 0.24 81.58 ± 2.94 108.1 ± 5.44 155.83 ± 3.16

Cu mg/L 0.04 ± 0.01 0.1 ± 0.01 0.09 ± 0 0.02 ± 0 0.06 ± 0.01
Fe mg/L 1.39 ± 0.07 0.57 ± 0.02 1.38 ± 0.08 1.7 ± 0.42 6.36 ± 0.3
Mn mg/L 0.34 ± 0.11 0.1 ± 0.01 0.11 ± 0.04 0.09 ± 0.01 0.01 ± 0
Zn mg/L 0.12 ± 0.01 0.12 ± 0.01 0.85 ± 0.08 1.1 ± 0.24 4.28 ± 0.19
Cl mg/L 255.2 ± 96.19 53.16 ± 2.87 757.45 ± 23.04 1253.81 ± 120.31 1753.43 ± 86.35
NO3 mg/L 655.78 ± 72.79 <LOQ <LOQ <LOQ <LOQ
PO4 mg/L 108.86 ± 10.27 3.72 ± 0.14 <LOQ <LOQ <LOQ

Table A7. The measured nutrient uptake by the duckweed in the simulated system, during cultiva-
tion ± standard deviations. ‘Start’ = the composition of the growing medium of a continuous system
at the start of the growing season; ‘1 m’/‘0.7 m‘/’0.4 m’ the composition of the growing medium of a
continuous system after 175 days of cultivation in a 1 m/0.7 m/0.4 m deep tank.

Ref Start 1 m 0.7 m 0.4 m

T-N mg/m2/d 141.07 ± 48.5 52.37 ± 33.81 33.11 ± 47.35 −21.31 ± 25.88 −154.92 ± 50.46
Ca mg/m2/d 134.47 ± 40.32 106.15 ± 14.88 95.66 ± 24.5 −80.88 ± 29.27 −150.05 ± 17.39
Mg mg/m2/d 27.69 ± 6.86 27.11 ± 2.94 43.16 ± 7.25 −6.67 ± 6.84 −38.55 ± 4.66
Na mg/m2/d 47.01 ± 22.34 151.42 ± 18.76 177.5 ± 17.4 24.86 ± 42.92 −141.55 ± 40.18
K mg/m2/d 736.47 ± 46.27 425.56 ± 74.55 467.68 ± 70.97 −321.33 ± 94.29 −627.37 ± 24.12
P mg/m2/d 15.12 ± 60.27 17.3 ± 17.11 −59.09 ± 27.31 −127.31 ± 22.58 −165.53 ± 4.42
S mg/m2/d 17.77 ± 13.08 7.06 ± 6.32 −9.37 ± 16.59 −51.78 ± 16.51 −79.73 ± 7.61

Al mg/m2/d −0.61 ± 0.96 0.2 ± 0.09 −0.69 ± 0.21 −3.50 ± 0.62 −1.44 ± 0.58
Cu mg/m2/d 0.13 ± 0.03 0.33 ± 0.1 0.02 ± 0.17 −0.45 ± 0.15 −0.57 ± 0.06
Fe mg/m2/d 1.03 ± 0.33 0.75 ± 0.47 2.11 ± 1.06 −1.13 ± 3.34 −0.83 ± 3.61
Mn mg/m2/d 9.7 ± 2.4 −1.33 ± 2.42 −1.15 ± 2.07 −6.47 ± 1.85 −13.93 ± 3.05
Zn mg/m2/d −0.54 ± 0.16 3.32 ± 0.35 9.5 ± 1.37 5.56 ± 2.04 −1.60 ± 3.91

Table A8. The measured nutrient removal in the simulated system, during cultivation ± standard
deviations (LOQ stands for limit of quantification). ’Start’ = the composition of the growing medium
of a continuous system at the start of the growing season; ’1 m’/’0.7 m’/’0.4 m’ = the composition of
the growing medium of a continuous system after 175 days of cultivation in a 1 m/0.7 m/0.4 m deep tank.

Ref Start 1 m 0.7 m 0.4 m

Ca mg/m2/d 73.84 ± 51.57 4.75 ± 3.67 −35.51 ± 2.89 −36.05 ± 10.74 −43.68 ± 5.43
Mg mg/m2/d 50.34 ± 26.48 6.67 ± 0.64 3.91 ± 4.2 27.91 ± 7.55 31.83 ± 15.75
Na mg/m2/d −7.33 ± 9.5 61.62 ± 17.24 185.24 ± 63.54 753.74 ± 76.23 1580.68 ± 410.85
K mg/m2/d 1275.63 ± 340.38 298.64 ± 31.13 694.56 ± 339.59 2993.52 ± 580.4 6270.47 ± 1816.01
P mg/m2/d 95.05 ± 42.91 14.57 ± 0 −22.65 ± 4.55 −20.67 ± 6.59 −57.55 ± 3.3
S mg/m2/d 109.56 ± 27.38 12.81 ± 6.29 27.66 ± 49.79 311.78 ± 73.45 546.73 ± 175.96

Cu mg/m2/d −0.12 ± 0 -0.32 ± 0.59 −0.12 ± 0.09 0.93 ± 0.36 0.75 ± 0.13
Fe mg/m2/d 4.78 ± 1.26 2.74 ± 0.77 29.64 ± 0.92 42.45 ± 3.71 81.49 ± 6.16
Mn mg/m2/d 8.66 ± 1.87 −1.05 ± 0.12 −1.18 ± 0.57 −1.10 ± 0.14 −5.87 ± 0.44
Zn mg/m2/d −1.22 ± 0.07 0.74 ± 0.18 20.6 ± 0.86 32.25 ± 2.71 53.93 ± 3.77
Cl mg/m2/d 504.35 ± 901.86 271.64 ± 40.95 2986.44 ± 1264.25 4724.47 ± 2290.4 8063.42 ± 6035.16

NO3 mg/m2/d 2800.82 ± 886.09 <LOQ <LOQ <LOQ <LOQ
PO4 mg/m2/d 518.28 ± 87.72 49.87 ± 8.33 <LOQ <LOQ <LOQ
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